
ROP (Return Oriented
Programming)
Advanced Stack Overflows

Stuart Nevans Locke

● Tools
○ Pwntools

● Review of Stack Overflows
○ DEP

● ROP
○ Demo

● Ret2libc
○ Demo

● Stack Pivoting
● Tools

○ one_gadget

Overview

Python package for helping with binary exploitation

pip install pwntools

from pwn import *

pe = process(‘./binary’) #run the binary

pe.sendline(‘A line’) #send ‘A line’ to the binary

pe.sendline(p64(0xFFFFFF)) #Sends a 64 bit pointer in string format

address = u64(pe.recvuntil(‘is the address’)) #Read a string address as an integer

Pwntools

Pwntools (Cont .)
pe = process(“/path/to/binary”)

pe.clean() #Essentially receives all messages and cleans that buffer

gdb.attach(pe) #Attach gdb to process

elf = ELF(‘./path/to/file)

print elf.symbols[callme’] #Gets the offset of callme

print elf.search("/bin/sh").next() #Prints the offset of the string /bin/sh in the file

PwnTools Demo

stnevans.me/binex/2/pwntools/demo

Follow the instructions given by the binary

Stack Overflows (Review)
● We read too much onto the stack
● Exploited by overwriting the return address
● We put shellcode on the stack and return to

it
● Mitigations

○ DEP
■ Data Execution Prevention
■ Let’s get around this

Previous Stack Frame

Return Address

Previous Base Pointer

Local Variables

(Currently) Unused Space

Base
Pointer

Low Memory
(0x0000)

Stack
Pointer

ROP (Return Oriented Programming)
Right before returning, the stack looks like

● What exactly does ret do?
○ ret

■ Basically pops into the instruction pointer
■ pop rip

● What if we overwrite the return address to return to a ret instruction?
○ ret

■ Our first ret, we go to another ret instruction
○ ret

■ This returns to whatever was above the previous return address on the stack

Previous Stack Frame

Return Address

ROP (Cont.)

Example:

0x1234: ret

0x1257: xor rax, rax

0x1258: ret

If we return to 0x1257, we can set rax to zero, and continue returning to more
addresses we control

Previous Stack Frame

Return Address

More Return Addresses!

Return Address

● Using pieces of the victim binary against itself
● These pieces of code we return to are called “gadgets”
● Returning to multiple gadgets makes up a “ROP chain”
● Our goal: make rax==1,rbx==0x2127

ROP (Cont.)

Our ROP chain:
0x123 xor rax,rax
0x291 rax+=1
0x303 pop rbx
0x2127 data for pop rbx

0x303: pop rbx

0x304: ret

0x123: xor rax, rax

0x124: ret

0x291: add rax, 1

0x292: ret Initial
Return
Pointer

Tool - ROPgadget
Used to find ROP gadgets

ROPgadget --binary /path/to/binary

Outputs the address of gadgets in the binary

EX:

0x000000000040060b : pop rdi ; ret

0x0000000000400609 : pop rsi ; pop r15 ; ret

0x0000000000400448 : call rax

Demo

stnevans.me/binex/2/easy

ret2libc (ROP)
● Finding ROP gadgets and chaining them together is really annoying
● Especially if you want to do anything interesting
● Much easier, call system from your ROP

0x122: push rax

0x123: pop rdi

0x124: ret

0x302: mov rax,0x402

0x303: ret

Our ROP chain:
0x302 rax=0x402 (address of /bin/sh)
0x122 rdi=rax
0x501 call system(rdi)

0x402: data(‘/bin/sh)

0x501 <system>: push rbp

Misc info:
System is located in libc
To find your libc, run ldd /binary
To get the offset, look at
pwntools ELF demo from earlier

Demo

stnevans.me/binex/2/medium

Stack Pivoting
● In all prior examples, we don’t worry about how much space we have to ROP
● What if we can only overflow 8 bytes?

○ We can only call one thing with our ROP.
○ Assuming nothing magically gives us a shell in the binary, we’re stuck

● Solution:
○ Make rsp point into some bigger buffer we can control
○ Let’s assume rax points to some string we can control
○ We want to pivot our stack to point to the buffer.

0x123: xchg rax, rsp

0x124: ret
If we return to 0x123, we can then
put the rest of our rop in the larger
buffer we can control.

● In libc, there are actually multiple ROP gadgets that call system(/bin/sh)
● They do require some prerequisites
● one_gadget prints them and their prerequisites
● usage: one_gadget /path/to/libc

These special gadgets are often called magic gadgets.

Note: Don’t become reliant on this, it acts as a crutch. This is not always a
possibility, and sometimes flat out doesn’t work (especially if shell isn’t bash)

Tool - one_gadget

Questions?
Next Presentation: ELF Structure/Defeating ASLR

