ELF Structure + Defeating
ASLR

Stuart Nevans Locke

Overview

e Review
o Stack Overflow + ROP
m ASLR

e ELF Structure

o Overview
o Read+Execute (.text, .plt)
o Read+Write (.got, .bss, .data)

e Tool - Checksec
e Bypassing ASLR

o gotleaks

m Demos
o Partial Overwrite
o Ret2plt

m Demos

Quick Note

e If | use a term you haven’t heard of, interrupt me
o | probably just forgot to explain it

Stack Overflow / ROP

e Stack Overflow

o Allows us to call any ROP gadgets in the target binary
o This lets us bypass DEP (Data Execution Prevention)

e Problem:
o There probably aren’t always going to be great ROP gadgets
e ASLR

o Address Space Layout Randomization
o We don’t know where libc is loaded, meaning we don’t know where system is in memory

ELF Structure

e It will greatly help to know what an
ELF file looks like

e Lots of sections
o VERY IMPORTANT

m .text
m .plt
m .got
o Interesting too
m .bss
m .data

e DEP
o WAX (Nothing is both Writeable
and Executable)

Elf Header
| S ——
| Program Header |
. Tabe
.interp | INTERP

.dynamic

.got
.data DYNAMIC

.bss

Not loaded
to memory

[w Read-Execute

Read-Write

Not loadable

 ———— |

PT_LOAD1

ELF Structure (Read+Execute)

e (Code is readable and executable

o _.text
o This contains all the code for a binary (all the code you write goes here)
o .plt

o Procedure Linkage Table
o Used to handle calls to external functions
o For example, let's say you call printf() in some function
m The code for printf isn’t compiled into your executable
m Instead, it's dynamically linked
e This means the address is resolved at runtime
e The first time the printf@plt is called, the address is resolved and stored to the
GOT
m pltis basically a crutch, calls to printf become printf@plt

ELF Structure (Read-Write) (.got)

e .got
o Global Offset Table
o Holds the pointer to a specific symbol
o For example, the got would contain the pointers to system, printf, puts, ...

e RELRO

o Defines if got is filled lazily or at load time

m First time printf is called, or when the binary is loaded into memory
o Partial

m gotis writeable

m Lazy gotfilling

m gotis not at all writeable
m gotfilled at load time

mov rdi, 0x20131
call printf@plt

text

Before First Call

printf@got: 0x4440: 0x2223
puts@got: 0x4448: 0x2226

.got

printf@plt: 0x2222: jmp [0x4440;
0x2223: push 0
jmp <dl_resolve_...> ‘

plt

After Being Called

printf@got: 0x4440: 0x9999
puts@got: 0x4448: 0x2226

.got

printf: 0x999: push rbp
mov rbp, rsp

ret

text of libc

mov eax, Ox1
call printf
.text

0x1337: mov esp, Ox15
0x1339: jmp 0x54356772

£ | 9x1234: printf@GOT = 0x1337
0x1238: puts@GOT = Ox2337

.got

0x1234: printf@GOT

0x8765: push ebp
0x8767: mov ebp, esp

0x8990: ret
.text of libc

0x8765

ELF Structure (Data Sections)

e .bss

o Uninitialized data

o char buffer[1024];
e .data

o Initialized data

o char buffer[1024]="I am a buffer”;
e .rodata

o Read Only Data (Constant)
o constintx=2;

Tool - Checksec

Tool to output information about security property of ELF files
Stack Canaries

RELRO (got writeable)

NX (Non Executable)

PIE (Position Independent Executable)

[st@localhost gotl]$ checksec ./gotl
[*] '/home/st/Desktop/teaching/3/gotl/gotl’

Arch: amd64-64-1ittle
RELRO: Partial RELRO
Stack:

NX: NX enabled

PIE:

Bypassing ASLR (GOT leaks)

e Qur goalis to find the address of libc
o This allows us to find the address of system()
m With the address of system, we can ROP directly to the system() function
o No more relying on callme functions
e Let's assume we have some method of reading the data at any address
o With this, we can bypass ASLR (assuming code is not position independent)
o We leak the data in the GOT (Global Offset Table)
o Inthe GOT, we have pointers to libc and any other imported things

Demos

stnevans.me/3/got1/

stnevans.me/3/got2/

Bypassing ASLR (Partial Overwrite)

e ASLR only randomizes the higher bytes
o Page aligned
o Bottom byte is totally independent of ASLR
e If we have a valid pointer and we only change the bottom byte, it stays valid

o If we change the second byte, it might not be valid
m Potentially brute-forceable

} vmmap

LEGEND: STACK | | | | RWX | RODATA
0x7f1df8d25000 0x7f1df8f25000 ---p 200000 1b5000 /usr/l1ib64/1ibc-2.27.so Page Allgned
0x7f1df8f25000 0x7f1df8f29000 r--p 4000 1b5000 /usr/lib64/1ibc-2.27.so Addresses
0x7f1df9155000 0x7f1df9156000 r--p 1000 26000 /usr/lib64/1d-2.27.so

Ox7ffd8eadbboo Ox7ffd8eafdoBO® rw-p 22000 © [stackl

Bypassing ASLR(Partial Overwrite)

vmmap
LEGEND: STACK |

0x7f1df8d25000
0x7f1df8f25000

0x7f1df9155000

Ox7ffd8eadb0ooO

vmmap
LEGEND: STACK |

Ox7ffb8a903000
Ox7Tffb8abo30006

Ox7ffb8ad330060

| | RWX | RODATA

0x7f1df8f25000 ---p 200000 1b5000 /usr/lib64/1libc-2.27.so
0x7f1df8f29000 r--p 4000 1b5000 /usr/lib64/1ibc-2.27.so0
0x7f1df9156000 r--p 1000 26000 /usr/lib64/1d-2.27.so
Ox7ffd8eafdo®O® rw-p 22000 © [stackl

Page Aligned (Two different runs)

| WX | RODATA

Ox7ffb8abe300O ---p 200000 1b5000 /usr/lib64/1libc-2.27.so
0x7ffb8abo7000 r--p 4000 1b5000 /usr/lib64/libc-2.27.so
Ox7ffb8ad34000 r--p 1000 26000 /usr/lib64/1d-2.27.so0

Ox7ffffdo930600 rw-p 22000 © [stack]

Bypassing ASLR (re2plt)

e As mentioned before, the plt is used to resolve dynamically linked functions
o If we call the plt stub to a function, we don’t have to worry about ASLR
m plt automatically looks up the address in the got and locates the function

e We don’t need leaks if we can return to the plt

Demos

stnevans.me/binex/3/aslr1

stnevans.me/binex/3/hard

If you can do the hard one, you have a pretty solid handle on the elf structure and
ROP

Thanks to Duc again

