
ELF Structure + Defeating
ASLR

Stuart Nevans Locke

Overview
● Review

○ Stack Overflow + ROP
■ ASLR

● ELF Structure
○ Overview
○ Read+Execute (.text, .plt)
○ Read+Write (.got, .bss, .data)

● Tool - Checksec
● Bypassing ASLR

○ got leaks
■ Demos

○ Partial Overwrite
○ Ret2plt

■ Demos

Quick Note
● If I use a term you haven’t heard of, interrupt me

○ I probably just forgot to explain it

Stack Overflow / ROP
● Stack Overflow

○ Allows us to call any ROP gadgets in the target binary
○ This lets us bypass DEP (Data Execution Prevention)

● Problem:
○ There probably aren’t always going to be great ROP gadgets

● ASLR
○ Address Space Layout Randomization
○ We don’t know where libc is loaded, meaning we don’t know where system is in memory

ELF Structure
● It will greatly help to know what an

ELF file looks like
● Lots of sections

○ VERY IMPORTANT
■ .text
■ .plt
■ .got

○ Interesting too
■ .bss
■ .data

● DEP
○ W^X (Nothing is both Writeable

and Executable)

ELF Structure (Read+Execute)
● Code is readable and executable
● .text

○ This contains all the code for a binary (all the code you write goes here)

● .plt
○ Procedure Linkage Table
○ Used to handle calls to external functions
○ For example, let’s say you call printf() in some function

■ The code for printf isn’t compiled into your executable
■ Instead, it’s dynamically linked

● This means the address is resolved at runtime
● The first time the printf@plt is called, the address is resolved and stored to the

GOT
■ plt is basically a crutch, calls to printf become printf@plt

ELF Structure (Read-Write) (.got)
● .got

○ Global Offset Table
○ Holds the pointer to a specific symbol
○ For example, the got would contain the pointers to system, printf, puts, ...

● RELRO
○ Defines if got is filled lazily or at load time

■ First time printf is called, or when the binary is loaded into memory
○ Partial

■ got is writeable
■ Lazy got filling

○ Full
■ got is not at all writeable
■ got filled at load time

.text

mov rdi, 0x20131
call printf@plt printf@plt: 0x2222: jmp [0x4440]

 0x2223: push 0
 jmp <dl_resolve_…>

.plt

.got

Before First Call

printf@got: 0x4440: 0x2223
puts@got: 0x4448: 0x2226

.got

After Being Called

printf@got: 0x4440: 0x9999
puts@got: 0x4448: 0x2226

.text of libc

push rbp
mov rbp, rsp
…
ret

printf: 0x999:

ELF Structure (Data Sections)
● .bss

○ Uninitialized data
○ char buffer[1024];

● .data
○ Initialized data
○ char buffer[1024]=”I am a buffer”;

● .rodata
○ Read Only Data (Constant)
○ const int x = 2;

Tool - Checksec
● Tool to output information about security property of ELF files
● Stack Canaries
● RELRO (got writeable)
● NX (Non Executable)
● PIE (Position Independent Executable)

● Our goal is to find the address of libc
○ This allows us to find the address of system()

■ With the address of system, we can ROP directly to the system() function
○ No more relying on callme functions

● Let’s assume we have some method of reading the data at any address
○ With this, we can bypass ASLR (assuming code is not position independent)
○ We leak the data in the GOT (Global Offset Table)
○ In the GOT, we have pointers to libc and any other imported things

Bypassing ASLR (GOT leaks)

Demos
stnevans.me/3/got1/

stnevans.me/3/got2/

Bypassing ASLR (Partial Overwrite)
● ASLR only randomizes the higher bytes

○ Page aligned
○ Bottom byte is totally independent of ASLR

● If we have a valid pointer and we only change the bottom byte, it stays valid
○ If we change the second byte, it might not be valid

■ Potentially brute-forceable

Page Aligned
Addresses

Bypassing ASLR(Partial Overwrite)

Page Aligned (Two different runs)

Bypassing ASLR (re2plt)
● As mentioned before, the plt is used to resolve dynamically linked functions

○ If we call the plt stub to a function, we don’t have to worry about ASLR
■ plt automatically looks up the address in the got and locates the function

● We don’t need leaks if we can return to the plt

Demos
stnevans.me/binex/3/aslr1

stnevans.me/binex/3/hard

If you can do the hard one, you have a pretty solid handle on the elf structure and
ROP

Thanks to Duc again

