Review

Stuart Nevans Locke

Overview

Stack Frames
Stack Overflows
ROP
Mitigations

o NX

o ASLR

o PIE

o Stack Canaries
Elf Structure

o GOT+PLT
Mitigation

o RELRO

Stack Frames

e (Contains information about function

o Return address
o Previous Base Pointer
o Local Variables Return Address

m In some cases parameters

Previous Stack Frame

. : Stack
Base I Previous Base Pointer Bessciis

Pointer

Local Variables

Stack
Pointer

Stack Overflows

e \We read too much data onto the stack
o Overwrite everything!

Previous Stack Frame

Return Address

Base Previous Base Pointer
Pointer »

Local Variables

Stack
Pointer

ROP

e Be intelligent in our overwriting
o ret== pop rip
o If we overwrite the return
address to point to a ROP
gadget, we can execute
multiple pieces of code
m ROP gadget: something
ending with ret

Stack Overflows - Shellcode

e Older way of exploiting overflows

e Point the return address into a buffer we control

o Contains “shellcode”
m Code that gives us a shell when run

Previous Stack Frame

Address of shellcode \

Shellcode itself
can sometimes ’
be used, but SHELLCODE

this method is
outdated

Mitigations - NX

e NX/DEP/WAX

o Non Executable
o Data Execution Prevention
o Writable XOR Executable

e \What does this mean for us?

O The stack cannot be executed Previous Stack Frame

O No shellcode

m D: Address of shellcode \
|

e How to bypass?

o ROP Cannot be

executed

Mitigations - ASLR

e Address Space Layout Randomization

e You can'’t return to what you can't find!
o Randomizes libc
o Randomizes Stack
o Randomizes Heap

e Notably, our executable does NOT get randomized

e How to bypass
o Leak Pointer
o Partial Overwrite #we haven't talked about
o Ret2plt #we haven't talked about
o ROP in target executable

Mitigations - PIE

Position Independent Execution
ASLR -- But actually fully applied
Randomizes the executable location
Technically within the subset of ASLR

How to bypass:
o Leak Pointer
o Partial Overwrite #we haven’t talked about

Mitigations - Stack Canaries

e Make stack overflows impossible to exploit
e Put random value on stack
[

Check that it hasn’t changed before returning

Previous Stack Frame

Previous Stack Frame

Return Address

Previous Base Pointer

Stack Cana
Base gFvious BaSeg Bafse -
) Pointer
Pointer '

Local Variables Stack Local Variables
Stack '> Pointer‘
Pointe.

Tool - Checksec

e How to tell which ones are enabled
o checksec /path/toffile
o Comes with pwntools

e ASLR is actually enabled system wide, it's by default on

[st@localhost gotl]$ checksec ./gotl
[*] '/home/st/Desktop/teaching/3/gotl/gotl’

Arch: amd64-64-1ittle
RELRO: Partial RELRO
Stack:

NX: NX enabled

PIE:

Elf Structure R

Elf Header |

| S —|

| Program Header |

. Tabe
.interp

e Lots of sections
e Interesting Ones:

o .text
’ plt .dynamic
o .got -
e No Write+Execute data DYNAMIC
o That's DEP at work! { o PT_LOAD!
Not loaded
to memory

[w Read-Execute

Read-Write

Not loadable

Sections

o .text

o Contains all the code we write

o Just assembly
o .plt

o Trampoline for external calls

o Example: printf, puts, fgets, system, ...

o Handles dealing with ASLR to find true addresses of external functions
e .got

o Table of addresses

o Used by plt to store true addresses of external functions

mov rdi, 0x20131
call printf@plt

text

Before First Call

printf@got: 0x4440: 0x2223
puts@got: 0x4448: 0x2226

.got

printf@plt: 0x2222: jmp [0x4440;

plt

0x2223: push 0

jmp <dl_resolve_...

>)

mov rdi, 0x20011
call printf@plt
mov rdi, 0x20131
call printf@plt

printf@plt: 0x2222: jmp [0x4440]

plt

After Being Called

printf@got: 0x4440: 0x9999
puts@got: 0x4448: 0x2226

.got

0x2223: push 0
jmp <dl_resolve_...>

printf: 0x999: push rbp
mov rbp, rsp

ret

text of libc

Mitigation - RELRO

e RELocations Read Only
e Because of how the GOT is lazily loaded, it is writeable
e Full RELRO:

o GOT is filled at load time rather than runtime
o GOT is not writeable

e Partial RELRO:

o Default
o Doesn’t mean anything to us

Questions or Comments

e Anything anyone is remotely hazy on

