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Overview
● Stack Frames
● Stack Overflows
● ROP
● Mitigations

○ NX
○ ASLR
○ PIE
○ Stack Canaries

● Elf Structure
○ GOT+PLT

● Mitigation
○ RELRO



Stack Frames
● Contains information about function

○ Return address
○ Previous Base Pointer
○ Local Variables

■ In some cases parameters

Previous Stack Frame

Return Address

Previous Base Pointer

Local Variables

Base 
Pointer

Stack 
Pointer

Stack 
Frame



Stack Overflows
● We read too much data onto the stack

○ Overwrite everything!
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● Be intelligent in our overwriting
○ ret == pop rip
○ If we overwrite the return 

address to point to a ROP 
gadget, we can execute 
multiple pieces of code

■ ROP gadget: something 
ending with ret
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Stack Overflows - Shellcode
● Older way of exploiting overflows
● Point the return address into a buffer we control

○ Contains “shellcode”
■ Code that gives us a shell when run
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Mitigations - NX 
● NX / DEP / W^X

○ Non Executable
○ Data Execution Prevention
○ Writable XOR Executable

● What does this mean for us?
○ The stack cannot be executed

○ No shellcode
■ D:

● How to bypass?
○ ROP
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● Address Space Layout Randomization
● You can’t return to what you can’t find!

○ Randomizes libc
○ Randomizes Stack
○ Randomizes Heap

● Notably, our executable does NOT get randomized
● How to bypass

○ Leak Pointer
○ Partial Overwrite #we haven’t talked about
○ Ret2plt                #we haven’t talked about
○ ROP in target executable

Mitigations - ASLR



Mitigations - PIE
● Position Independent Execution
● ASLR -- But actually fully applied
● Randomizes the executable location
● Technically within the subset of ASLR
● How to bypass:

○ Leak Pointer
○ Partial Overwrite        #we haven’t talked about



Mitigations - Stack Canaries
● Make stack overflows impossible to exploit
● Put random value on stack 
● Check that it hasn’t changed before returning
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Tool - Checksec
● How to tell which ones are enabled

○ checksec /path/to/file
○ Comes with pwntools 

● ASLR is actually enabled system wide, it’s by default on



Elf Structure
● Lots of sections
● Interesting Ones:

○ .text
○ .plt
○ .got

● No Write+Execute
○ That’s DEP at work!



● .text
○ Contains all the code we write
○ Just assembly

● .plt
○ Trampoline for external calls
○ Example: printf, puts, fgets, system, …
○ Handles dealing with ASLR to find true addresses of external functions

● .got
○ Table of addresses
○ Used by plt to store true addresses of external functions

Sections



.text

mov rdi, 0x20131
call printf@plt printf@plt: 0x2222:  jmp [0x4440]

        0x2223:  push 0
                                jmp <dl_resolve_…>
                             
.plt

.got

Before First Call 

printf@got: 0x4440: 0x2223
puts@got:  0x4448: 0x2226



mov rdi, 0x20131
call printf@plt printf@plt: 0x2222:  jmp [0x4440]

        0x2223:  push 0
                                jmp <dl_resolve_…>
                             

.got

After Being Called

printf@got: 0x4440: 0x9999
puts@got:  0x4448: 0x2226

.text of libc

push rbp
mov rbp, rsp
…
ret

printf: 0x999:

.text

mov rdi, 0x20011
call printf@plt
mov rdi, 0x20131
call printf@plt printf@plt: 0x2222:  jmp [0x4440]

        0x2223:  push 0
                                jmp <dl_resolve_…>
                             
.plt



Mitigation - RELRO
● RELocations Read Only
● Because of how the GOT is lazily loaded, it is writeable
● Full RELRO:

○ GOT is filled at load time rather than runtime
○ GOT is not writeable

● Partial RELRO:
○ Default
○ Doesn’t mean anything to us



Questions or Comments
● Anything anyone is remotely hazy on


