
Review
Stuart Nevans Locke

Overview
● Stack Frames
● Stack Overflows
● ROP
● Mitigations

○ NX
○ ASLR
○ PIE
○ Stack Canaries

● Elf Structure
○ GOT+PLT

● Mitigation
○ RELRO

Stack Frames
● Contains information about function

○ Return address
○ Previous Base Pointer
○ Local Variables

■ In some cases parameters

Previous Stack Frame

Return Address

Previous Base Pointer

Local Variables

Base
Pointer

Stack
Pointer

Stack
Frame

Stack Overflows
● We read too much data onto the stack

○ Overwrite everything!

Previous Stack Frame

Return Address

Previous Base Pointer

Local Variables

Base
Pointer

Stack
Pointer

Attacker’s Previous Stack Frame

Attacker’s Return Address

Attacker’s Previous Base Pointer

Attacker Controlled
Local Variables

● Be intelligent in our overwriting
○ ret == pop rip
○ If we overwrite the return

address to point to a ROP
gadget, we can execute
multiple pieces of code

■ ROP gadget: something
ending with ret

ROP

Attacker’s #1 Gadget Address

Attacker’s Previous Base Pointer

Attacker Controlled
Local Variables

Attacker’s #2 Gadget Address

Attacker’s #3 Gadget Address

Attacker’s #n Gadget Address

Stack Overflows - Shellcode
● Older way of exploiting overflows
● Point the return address into a buffer we control

○ Contains “shellcode”
■ Code that gives us a shell when run

Previous Stack Frame

Address of shellcode

SHELLCODE

Shellcode itself
can sometimes
be used, but
this method is
outdated

Mitigations - NX
● NX / DEP / W^X

○ Non Executable
○ Data Execution Prevention
○ Writable XOR Executable

● What does this mean for us?
○ The stack cannot be executed

○ No shellcode
■ D:

● How to bypass?
○ ROP

Previous Stack Frame

Address of shellcode

SHELLCODE
Cannot be
executed

● Address Space Layout Randomization
● You can’t return to what you can’t find!

○ Randomizes libc
○ Randomizes Stack
○ Randomizes Heap

● Notably, our executable does NOT get randomized
● How to bypass

○ Leak Pointer
○ Partial Overwrite #we haven’t talked about
○ Ret2plt #we haven’t talked about
○ ROP in target executable

Mitigations - ASLR

Mitigations - PIE
● Position Independent Execution
● ASLR -- But actually fully applied
● Randomizes the executable location
● Technically within the subset of ASLR
● How to bypass:

○ Leak Pointer
○ Partial Overwrite #we haven’t talked about

Mitigations - Stack Canaries
● Make stack overflows impossible to exploit
● Put random value on stack
● Check that it hasn’t changed before returning

Previous Stack Frame

Return Address

Previous Base Pointer

Stack CanaryBase
Pointer
Stack
Pointer

Previous Stack Frame

Return Address

Previous Base Pointer

Local Variables

Base
Pointer

Stack
Pointer

Local Variables

Tool - Checksec
● How to tell which ones are enabled

○ checksec /path/to/file
○ Comes with pwntools

● ASLR is actually enabled system wide, it’s by default on

Elf Structure
● Lots of sections
● Interesting Ones:

○ .text
○ .plt
○ .got

● No Write+Execute
○ That’s DEP at work!

● .text
○ Contains all the code we write
○ Just assembly

● .plt
○ Trampoline for external calls
○ Example: printf, puts, fgets, system, …
○ Handles dealing with ASLR to find true addresses of external functions

● .got
○ Table of addresses
○ Used by plt to store true addresses of external functions

Sections

.text

mov rdi, 0x20131
call printf@plt printf@plt: 0x2222: jmp [0x4440]

 0x2223: push 0
 jmp <dl_resolve_…>

.plt

.got

Before First Call

printf@got: 0x4440: 0x2223
puts@got: 0x4448: 0x2226

mov rdi, 0x20131
call printf@plt printf@plt: 0x2222: jmp [0x4440]

 0x2223: push 0
 jmp <dl_resolve_…>

.got

After Being Called

printf@got: 0x4440: 0x9999
puts@got: 0x4448: 0x2226

.text of libc

push rbp
mov rbp, rsp
…
ret

printf: 0x999:

.text

mov rdi, 0x20011
call printf@plt
mov rdi, 0x20131
call printf@plt printf@plt: 0x2222: jmp [0x4440]

 0x2223: push 0
 jmp <dl_resolve_…>

.plt

Mitigation - RELRO
● RELocations Read Only
● Because of how the GOT is lazily loaded, it is writeable
● Full RELRO:

○ GOT is filled at load time rather than runtime
○ GOT is not writeable

● Partial RELRO:
○ Default
○ Doesn’t mean anything to us

Questions or Comments
● Anything anyone is remotely hazy on

