
Miscellaneous Stuff
Stuart Nevans Locke

Overview
● Background on Integers

○ Size
○ Signed vs Unsigned

● Overflow and Underflow
● Integer Size Mismatch
● Uninitialized Memory
● Out of bounds Accesses
● Tools

○ One_gadget
● Fastcall

Background on Integers

● Signed and Unsigned Integers
○ Unsigned have an extra bit to use and can store numbers up to twice the magnitude

● Normal Sizes
○ char - 8 bit
○ int - 32 bit
○ long long - 64 bit

Integer Overflow
unsigned char x = 255;

x+=1;

● X will now have a value of 0
● This is because 255 is 11111111 in binary

Integer Underflow
unsigned char x = 0;

x-=1;

● X now has a value of 255
● 0 is 00000000 in binary

Integer Size Mismatch
void boundsCheck(int x){

return x <100;

}

size_t var = 1LL<<33+1

boundsCheck(var) // returns true

memcpy(dest, src, var) //going to be an overflow

● Compilers can give warnings about these (-Wconversion flag for gcc)
○ Nonetheless, these occur in real software
○ https://googleprojectzero.blogspot.com/2015/07/when-int-is-new-short.html

https://googleprojectzero.blogspot.com/2015/07/when-int-is-new-short.html

● Stack Variables
○ int uninitialized;
○ printf(“%i\n”,uninitialized);

● Heap Variables
○ int * x = malloc(32);
○ printf(“%i\n”,*x);

● We can sometimes control the value of these variables
○ If they are used before being given values, we probably break things

● Compiler also typically warns about these

Uninitialized Variables

Out of Bounds Accesses
● Sometimes used as a way to exploit overflow

Example:

int offset;
scanf(“%d”,&offset);

printf(“%llx”,array[offset]);

● This would give us an arbitrary leak
● If we can set using an OOB, we have arbitrary write

Tool - one_gadget
● Recall back to ROP

○ Having a function that called system(“/bin/sh”) was great
○ But we said that doesn’t happen in the real world

● A Magic Gadget is a piece of code that does exactly that
○ Found inside of libc

● No more full ROP chains
○ Just call the magic gadget

● There are multiple magic gadgets in libc
● one_gadget prints them and their prerequisites
● usage: one_gadget /path/to/libc

Note: Don’t become too reliant on this, it acts as a crutch. If /bin/sh doesn’t exist,
this won’t work

Tool - one_gadget

● Most popular calling convention used on 64 bit
● Arguments passed in registers

○ 1st - rdi
○ 2nd - rsi
○ 3rd - rdx
○ 4th - r10

● Return value put in rax

Fastcall

Questions
What do you want to cover?

● Heap Stuff (There’s a lot of this)
● Fuzzers

○ Theoretical
○ Practical

● Cool Variants of ROP
○ Blind Return Oriented Programming
○ Signal Return Oriented Programming (Not much substance to this one)

● Browser Stuff
● Kernel Stuff

Print Format Vulnerability
● These could be their own presentation

○ Might be, if people want to do more with them

● Calling printf(userInput) is really bad
○ If the user passes “%d”, printf reads an integer from the stack
○ More generally, any format specifiers are read from the stack

● Leaks
○ %llx will leak a pointer off the stack in 64 bit

● %n
○ Format specifier seemingly made to allow print formats to be dangerous
○ Writes the amount of bytes written so far to the variable referred to by some address
○ printf(“Hi%n”,&int)

■ int would contain two

