
Leaks and Array out of 
bounds

Stuart Nevans Locke



Overview
● Leaks

○ Common leak targets

● Arrays
○ Char[] and leaks
○ Array Out of Bounds

■ Relative OOB
■ Absolute accesses



Leaks

● Often the first thing you need to do when crafting an exploit
○ Pointer leaks used to defeat ASLR
○ Libc is (practically) always ASLRed

■ We want to call system(“/bin/sh”)
● If PIE is enabled, you need a leak before you fully overwrite 

anything
○ Partial Overwrites still exist

● We might also want to leak stack canary
○ Assuming we have stack overflow



Leaks

● So what are some leak targets?
○ Places that have values we might want to leak

■ Stack
● What can we get from a stack leak?

■ GOT
● What can we get from a GOT leak?

■ Heap
● I promise, we can leak stuff from there too
● Talk about next semester



Leaks

● Leak Primitive
○ Often used in more complicated exploits
○ Two types:

■ Relative leak
● Takes an offset to leak, leaks at least one byte

■ Absolute leak
● Takes a pointer to leak, leaks at least one byte

● I’ll show an example of both later



Arrays

● In C, as we know, arrays have no set size
● Accessing arrays is actually syntactic sugar

○ arr[offset]
○ *(arr+offset)
○ offset[arr]



● char string[16] = “Hello\n”; printf(string);
○ How does c know where strings end?

■ Null terminators
● Every string ends with a null byte
● In a 16 byte string, there are really only 15 bytes of usable space

● How to abuse this
○ Write 16 bytes to a 16 byte string buffer

■ Then print it
● C will continue printing characters until a null byte

Char[] and leaks



Char[] Leak

Return Address

Previous Base Pointer

0x00
0x41
0x41
0x41
0x41
0x41
0x41
0x41

char 
string[8];

Return Address

Previous Base Pointer

0x41
0x41
0x41
0x41
0x41
0x41
0x41
0x41

char 
string[8];



Array out of Bounds

● Array out of Bounds (OOB) are conceptually very simple
○ You don’t bounds check your index in an array

● arr[idx] = data;
○ Write using Array OOB

● puts(arr[idx]);
○ Leak using Array OOB



Relative OOB

● int array[32]; printf(“%i\n”, array[idx]);
○ If we make idx 32, we have a relative OOB

■ Meaning we read 4 bytes past the bounds of the array

● Allow us to do Array OOB relative to the location of the variable
○ You can consider a buffer overflow a relative out of bounds write

● Can only look at data “near us” in memory



● Absolute Access
○ Can read/write to absolute addresses

■ Meaning you could give a GOT address and leak/write to it
● Turning Relative OOB into Absolute

○ Depends on the section of memory it is in
■ .data or .bss

● Stored at a static address. Just subtract the known address.
■ Stack

● Leak a stack pointer from the stack. (Base Pointer is a great way to 
do this.)

● Subtract the leaked stack pointer.

Absolute Read/Write



Questions?
We have demos

If interested, I could also go through my process of what I do when I first get a 
binary


