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Disclaimer

Much of this information is very specific to x86 based systems
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Virtual vs Physical Memory
Pages

KASLR vs ASLR (KAISER too)
Userspace/Kernel Communication

Kernel Security
o Race Conditions
o Infoleaks



Protection Rings

e Ring O - the kernel

O

O

All kernel code is executed in ring 0
Drivers generally run in ring O

e Ring 1and?2

O

Largely useless - Unused by mainstream windows
and linux

e Ring 3 - Userspace

@)

O

All normal code runs here
We've only looked at userspace exploitation so far

Ring 1

Ring 0

Kernel

Device drivers
Device drivers

Applications




Protection Rings (Cont.)

e Note:
o Ring 0-3 are the only real protection rings
e Ring -1 - Hypervisor
e Ring-2-SMM
e Ring-3-IME



Virtual memory Physical

Vlrtual and PhyS|Ca| Memory (per process) memory

e Physical Memory

o Exactly what it sounds like
m Physical Memory directly corresponds to bytes
in RAM or other storage
o Shared by all processes

e Virtual Memory

o Unique per process
o Looks identical to physical memory to a process, but it can be
stored anywhere.




Virtual Memory (Cont.)

Kernél
i Kernel Space
(Shared)

e This is why all programs can have

the same address space
o Remember how ELFs use 0x400000

User Space
(Private)
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Pages

e Maps virtual memory to physical memory
e Pages also have permissions set, such as RWX
e Typical page size is 4096 bytes

pundbg> vmmap
LEGEND: STACK | | | DATA | RWX | RODATA

0x7f1df8d25000 0x7f1df8f25000 ---p 200000 1b5000 /usr/1ib64/libc-2.27.so0
0x7f1df8f25000 0x7f1df8f29000 r--p 4000 1b5000 /usr/1ib64/libc-2.27.s0

0x7f1df9155000 0x7f1df9156000 r--p 1000 26000 /usr/lib64/1d-2.27.s0

0x7ffd8eadb000 Ox7ffd8eafdoO® rw-p 22000 0 [stackl



KASLR vs ASLR

e ASLR - Address Space Layout Randomization
o Very, very good at what it does (Randomizing and HIDING where pages

are mapped)
m Microsoft has a bounty for a generic ASLR bypass

e KASLR - Kernel Address Space Layout Randomization

o Very, very bad at what it does (Randomizing and HIDING where the kernel pages
are mapped)
m Hardware limits the amount of places kernel memory can be
m No bounty for bypassing
o 64 bit Linux KASLR gives 6 bits of entropy
o 64 bit Windows KASLR gives 13 bits of entropy
o Side channel attacks allowed KASLR to be trivially bypassed



KAISER

® Kernel Address Isolation to have Side-channels Efficiently Removed
o Also called KPTI (Kernel Page Table Isolation)

e Essentially better KASLR
o KAISER actually prevented Meltdown



Userspace/Kernel Communication

e The main method of communication (not only) is via syscalls
o Syscall (0f 05) instruction
m Basically jumps to kernel space
m The kernel then figures out which syscall is being invoked and runs it
(eax on linux)
o Typically 100s of syscalls



Questions

The prior information is useful background for the rest of this, so ask any
questions

After this is stuff more related to exploitation



Kernel Security

e \What we don’t want
o Any information leakage
m Could be used to defeat KASLR/KAISER
m Could also just contain sensitive information
o Any null pointers
m It's not fun when a kernel dereferences an invalid pointer
o Any unvalidated pointers
m Corrupted pointers can lead to code execution

e \What we will talk about
o Race Conditions

o Unvalidated Pointers
o Infoleaks



Race Conditions

e Anyone see the issue in the following code?
e TOCTOU (Time of Check to Time of Use)

/[This function can be called by any users. It executes only trusted binaries to run as root
/[Trusted binaries are guaranteed to be safe to execute.
/ffilePath is a pointer to userspace memory that has the path of the file being executed.
int safeExecuteProgramAsRoot(char * filePath){
if(lisValidFilePath(filePath){
return INVALID_FILEPATH,;
¥
if(lisTrustedProgram(filePath))X{
return PROGRAM_UNTRUSTED;
}
executeProgramAsRoot(filePath);
return SUCCESS;



Unvalidated Pointers

e Validate all Pointers before using them

//[Takes a pointer provided by userspace to a buffer in userspace
void getKernelVersion(char * buffer){
char[] version = “Stuart’s x86-64 Kernel Version 1.01317;
memcpy(buffer, version, sizeof(version));

}



Y truct customStri
Race Conditions S oo,
int length;
e Read-After-Write }

//Userspace provided output, bufferToUse pointers.
int getSystemVersion(customString * output, char * bufferToUse){
if(lisSafePointer(output) && isSafePointer(bufferToUse)){
return INVALID PTR;
}

char[] version = “Stuart’s x86-64 Kernel Version 1.01317;

customString->buffer=bufferToUse;
customString->length=strlen(version);

memcpy(customString->buffer,strlen(version);
return SUCCESS;



Infoleaks

int divide_numbers(int denom, int numerator, int * out){
if(lisSafePointer(out)){
return INVALID_PTR;
}

int result;

if(denom !'= 0}
result=denom/numerator;

}

*out=result;
return SUCCESS;



Infoleaks

typedef struct resultStruct{
uint8_t success;
int result;
} resultStruct;
int divide_numbers(int denom, int numerator, resultStruct * out){
if(lisSafePointer(out)){
return INVALID PTR;
}
resultStruct outStruct;
outStruct.result=0; // No uninitialized memory!
outStruct.success=0;
if(denom != 0){
outStruct.result=denom/numerator;
outStruct.success=1;
}
memcpy(out,outStruct,sizeof(resultStruct));
return SUCCESS;



Takeaways

e Unvalidated Pointers
o Difficulty to spot: Easy
o Difficulty to fix: Easy
o Risk: Critical
e Race Conditions
o Difficulty to spot: Medium
o Difficulty to fix: Depends/Medium
o Risk: High
e |Infoleaks
o Difficulty to spot: Hard
o Difficulty to fix: Easy
o Risk: Low (still an issue though)



Takeaways

e Kernel security is really hard.

e Linux example
o Linux had a “put_user” function that copied data to userspace.
m Same as isValidPointer in my code.
o They also had “unsafe_put_user” which was a faster version.
o Inone of the syscalls (waitid), a developer accidentally just used “unsafe_put_user”.
m Pretty easy to exploit vulnerability that was incredibly easy to access
e Windows example
o One project (bochspwn reloaded) attempted to automate finding infoleak bugs

o The project was able to find 29 separate infoleaks.
m  One of vulnerable functions leaked up to 6672 bytes
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Questions?

e Looking for input on what to cover in the future
o Binary Exploitation (Heap)
o Low Level Stuff (Like this!.) (Maybe talk about pipelining and CPUs.)
o Reverse Engineering (Hard to create a lot of content for.)



