Ring Zero

Stuart Nevans Locke



Disclaimer

Much of this information is very specific to x86 based systems



Overview

Protection Rings

Virtual vs Physical Memory
Pages

KASLR vs ASLR (KAISER too)
Userspace/Kernel Communication

Kernel Security
o Race Conditions
o Infoleaks



Protection Rings

e Ring O - the kernel

O

O

All kernel code is executed in ring 0
Drivers generally run in ring O

e Ring 1and?2

O

Largely useless - Unused by mainstream windows
and linux

e Ring 3 - Userspace

@)

O

All normal code runs here
We've only looked at userspace exploitation so far

Ring 1

Ring 0

Kernel

Device drivers
Device drivers

Applications




Protection Rings (Cont.)

e Note:
o Ring 0-3 are the only real protection rings
e Ring -1 - Hypervisor
e Ring-2-SMM
e Ring-3-IME



Virtual memory Physical

Vlrtual and PhyS|Ca| Memory (per process) memory

e Physical Memory

o Exactly what it sounds like
m Physical Memory directly corresponds to bytes
in RAM or other storage
o Shared by all processes

e Virtual Memory

o Unique per process
o Looks identical to physical memory to a process, but it can be
stored anywhere.




Virtual Memory (Cont.)

Kernél
i Kernel Space
(Shared)

e This is why all programs can have

the same address space
o Remember how ELFs use 0x400000

User Space
(Private)

a
&
&
wm
b
a
o
3
<<
%
Q
o
o

Physical
Memory
*

Physical Memaory Frame




Pages

e Maps virtual memory to physical memory
e Pages also have permissions set, such as RWX
e Typical page size is 4096 bytes

pundbg> vmmap
LEGEND: STACK | | | DATA | RWX | RODATA

0x7f1df8d25000 0x7f1df8f25000 ---p 200000 1b5000 /usr/1ib64/libc-2.27.so0
0x7f1df8f25000 0x7f1df8f29000 r--p 4000 1b5000 /usr/1ib64/libc-2.27.s0

0x7f1df9155000 0x7f1df9156000 r--p 1000 26000 /usr/lib64/1d-2.27.s0

0x7ffd8eadb000 Ox7ffd8eafdoO® rw-p 22000 0 [stackl



KASLR vs ASLR

e ASLR - Address Space Layout Randomization
o Very, very good at what it does (Randomizing and HIDING where pages

are mapped)
m Microsoft has a bounty for a generic ASLR bypass

e KASLR - Kernel Address Space Layout Randomization

o Very, very bad at what it does (Randomizing and HIDING where the kernel pages
are mapped)
m Hardware limits the amount of places kernel memory can be
m No bounty for bypassing
o 64 bit Linux KASLR gives 6 bits of entropy
o 64 bit Windows KASLR gives 13 bits of entropy
o Side channel attacks allowed KASLR to be trivially bypassed



KAISER

® Kernel Address Isolation to have Side-channels Efficiently Removed
o Also called KPTI (Kernel Page Table Isolation)

e Essentially better KASLR
o KAISER actually prevented Meltdown



Userspace/Kernel Communication

e The main method of communication (not only) is via syscalls
o Syscall (0f 05) instruction
m Basically jumps to kernel space
m The kernel then figures out which syscall is being invoked and runs it
(eax on linux)
o Typically 100s of syscalls



Questions

The prior information is useful background for the rest of this, so ask any
questions

After this is stuff more related to exploitation



Kernel Security

e \What we don’t want
o Any information leakage
m Could be used to defeat KASLR/KAISER
m Could also just contain sensitive information
o Any null pointers
m It's not fun when a kernel dereferences an invalid pointer
o Any unvalidated pointers
m Corrupted pointers can lead to code execution

e \What we will talk about
o Race Conditions

o Unvalidated Pointers
o Infoleaks



Race Conditions

e Anyone see the issue in the following code?
e TOCTOU (Time of Check to Time of Use)

/[This function can be called by any users. It executes only trusted binaries to run as root
/[Trusted binaries are guaranteed to be safe to execute.
/ffilePath is a pointer to userspace memory that has the path of the file being executed.
int safeExecuteProgramAsRoot(char * filePath){
if(lisValidFilePath(filePath){
return INVALID_FILEPATH,;
¥
if(lisTrustedProgram(filePath))X{
return PROGRAM_UNTRUSTED;
}
executeProgramAsRoot(filePath);
return SUCCESS;



Unvalidated Pointers

e Validate all Pointers before using them

//[Takes a pointer provided by userspace to a buffer in userspace
void getKernelVersion(char * buffer){
char[] version = “Stuart’s x86-64 Kernel Version 1.01317;
memcpy(buffer, version, sizeof(version));

}



Y truct customStri
Race Conditions S oo,
int length;
e Read-After-Write }

//Userspace provided output, bufferToUse pointers.
int getSystemVersion(customString * output, char * bufferToUse){
if(lisSafePointer(output) && isSafePointer(bufferToUse)){
return INVALID PTR;
}

char[] version = “Stuart’s x86-64 Kernel Version 1.01317;

customString->buffer=bufferToUse;
customString->length=strlen(version);

memcpy(customString->buffer,strlen(version);
return SUCCESS;



Infoleaks

int divide_numbers(int denom, int numerator, int * out){
if(lisSafePointer(out)){
return INVALID_PTR;
}

int result;

if(denom !'= 0}
result=denom/numerator;

}

*out=result;
return SUCCESS;



Infoleaks

typedef struct resultStruct{
uint8_t success;
int result;
} resultStruct;
int divide_numbers(int denom, int numerator, resultStruct * out){
if(lisSafePointer(out)){
return INVALID PTR;
}
resultStruct outStruct;
outStruct.result=0; // No uninitialized memory!
outStruct.success=0;
if(denom != 0){
outStruct.result=denom/numerator;
outStruct.success=1;
}
memcpy(out,outStruct,sizeof(resultStruct));
return SUCCESS;



Takeaways

e Unvalidated Pointers
o Difficulty to spot: Easy
o Difficulty to fix: Easy
o Risk: Critical
e Race Conditions
o Difficulty to spot: Medium
o Difficulty to fix: Depends/Medium
o Risk: High
e |Infoleaks
o Difficulty to spot: Hard
o Difficulty to fix: Easy
o Risk: Low (still an issue though)



Takeaways

e Kernel security is really hard.

e Linux example
o Linux had a “put_user” function that copied data to userspace.
m Same as isValidPointer in my code.
o They also had “unsafe_put_user” which was a faster version.
o Inone of the syscalls (waitid), a developer accidentally just used “unsafe_put_user”.
m Pretty easy to exploit vulnerability that was incredibly easy to access
e Windows example
o One project (bochspwn reloaded) attempted to automate finding infoleak bugs

o The project was able to find 29 separate infoleaks.
m  One of vulnerable functions leaked up to 6672 bytes



Takeaways

e Kernel security is really hard.

e Linux example
o Linux had a “put_user” function that copied data to userspace.
m Same as isValidPointer in my code.
o They also had “unsafe_put_user” which was a faster version.
o Inone of the syscalls (waitid), a developer accidentally just used “unsafe_put_user”.
m Pretty easy to exploit vulnerability that was incredibly easy to access
e Windows example
o One project (bochspwn reloaded) attempted to automate finding infoleak bugs

o The project was able to find 29 separate infoleaks.
m  One of vulnerable functions leaked up to 6672 bytes



it
Disclosure ity CV
sclosure Vulr it
ity L * 2 Jurczyk of ) roject Le
Disclosure Vulnerabilit £-2017-84 X R "
WS Ity LV - N k of P
sclosure Vulnerability VE-2017-8492 z . , -
Windows Kernel Information Disclosure Vulnerability 462 Mateusz Jurczyk of » Project Ze
Ke: n Di Vulnerability B 17- A
ity E-2017-0175
Win32k Information Disclosure Vulnerability 2017-84 .
.
C sure Vulnerabilit 2 2
W 2k Inf ation Di ure V erability 7. . M r
e Vulnerabilit
- : Win32k Informa Disclo Vuinerability 2017-847 Mateusz Jurczyk of e Project Zero
Disclosure Vu CVE-2017-025
dows Kernel Information Disclosure Vulnerabilit 2017-8474 o fa and pjf of IceSword Lab
. N 2 Jurczyk of 3
Windows Ke ation Disclosure Vulnerability 2017-84 e fa and pjf of d Lab
. k of G oject 0
Win32k Info on [ osure Vulnerability 201 4 2vk of - e e




Questions?

e Looking for input on what to cover in the future
o Binary Exploitation (Heap)
o Low Level Stuff (Like this!.) (Maybe talk about pipelining and CPUs.)
o Reverse Engineering (Hard to create a lot of content for.)



