
Ring Zero
Stuart Nevans Locke

Disclaimer
Much of this information is very specific to x86 based systems

Overview
● Protection Rings
● Virtual vs Physical Memory
● Pages
● KASLR vs ASLR (KAISER too)
● Userspace/Kernel Communication
● Kernel Security

○ Race Conditions
○ Infoleaks

Protection Rings

● Ring 0 - the kernel
○ All kernel code is executed in ring 0
○ Drivers generally run in ring 0

● Ring 1 and 2
○ Largely useless - Unused by mainstream windows

 and linux

● Ring 3 - Userspace
○ All normal code runs here
○ We’ve only looked at userspace exploitation so far

Protection Rings (Cont.)

● Note:
○ Ring 0-3 are the only real protection rings

● Ring -1 - Hypervisor
● Ring -2 - SMM
● Ring -3 - IME

Virtual and Physical Memory

● Physical Memory
○ Exactly what it sounds like

■ Physical Memory directly corresponds to bytes
in RAM or other storage

○ Shared by all processes
● Virtual Memory

○ Unique per process
○ Looks identical to physical memory to a process, but it can be

stored anywhere.

● This is why all programs can have
the same address space

○ Remember how ELFs use 0x400000

●

Virtual Memory (Cont.)

● Maps virtual memory to physical memory
● Pages also have permissions set, such as RWX
● Typical page size is 4096 bytes

Pages

KASLR vs ASLR

● ASLR - Address Space Layout Randomization
○ Very, very good at what it does (Randomizing and HIDING where pages

are mapped)
■ Microsoft has a bounty for a generic ASLR bypass

● KASLR - Kernel Address Space Layout Randomization
○ Very, very bad at what it does (Randomizing and HIDING where the kernel pages

are mapped)
■ Hardware limits the amount of places kernel memory can be
■ No bounty for bypassing

○ 64 bit Linux KASLR gives 6 bits of entropy
○ 64 bit Windows KASLR gives 13 bits of entropy
○ Side channel attacks allowed KASLR to be trivially bypassed

● Kernel Address Isolation to have Side-channels Efficiently Removed
○ Also called KPTI (Kernel Page Table Isolation)

● Essentially better KASLR
○ KAISER actually prevented Meltdown

KAISER

Userspace/Kernel Communication

● The main method of communication (not only) is via syscalls
○ Syscall (0f 05) instruction

■ Basically jumps to kernel space
■ The kernel then figures out which syscall is being invoked and runs it

(eax on linux)
○ Typically 100s of syscalls

Questions
The prior information is useful background for the rest of this, so ask any
questions

After this is stuff more related to exploitation

Kernel Security
● What we don’t want

○ Any information leakage
■ Could be used to defeat KASLR/KAISER
■ Could also just contain sensitive information

○ Any null pointers
■ It’s not fun when a kernel dereferences an invalid pointer

○ Any unvalidated pointers
■ Corrupted pointers can lead to code execution

● What we will talk about
○ Race Conditions
○ Unvalidated Pointers
○ Infoleaks

Race Conditions
● Anyone see the issue in the following code?
● TOCTOU (Time of Check to Time of Use)

//This function can be called by any users. It executes only trusted binaries to run as root
//Trusted binaries are guaranteed to be safe to execute.
//filePath is a pointer to userspace memory that has the path of the file being executed.
int safeExecuteProgramAsRoot(char * filePath){
 if(!isValidFilePath(filePath){
 return INVALID_FILEPATH;
 }
 if(!isTrustedProgram(filePath)){
 return PROGRAM_UNTRUSTED;
 }
 executeProgramAsRoot(filePath);
 return SUCCESS;
}

Unvalidated Pointers
● Validate all Pointers before using them

//Takes a pointer provided by userspace to a buffer in userspace
void getKernelVersion(char * buffer){
 char[] version = “Stuart’s x86-64 Kernel Version 1.0131”;
 memcpy(buffer, version, sizeof(version));
}

● Read-After-Write

//Userspace provided output, bufferToUse pointers.
int getSystemVersion(customString * output, char * bufferToUse){
 if(!isSafePointer(output) && isSafePointer(bufferToUse)){

return INVALID_PTR;
 }
 char[] version = “Stuart’s x86-64 Kernel Version 1.0131”;

 customString->buffer=bufferToUse;
 customString->length=strlen(version);

 memcpy(customString->buffer,strlen(version);
 return SUCCESS;
}

struct customString{
char * buffer;
int length;

}

Race Conditions

int divide_numbers(int denom, int numerator, int * out){
 if(!isSafePointer(out)){
 return INVALID_PTR;
 }
 int result;
 if(denom != 0){
 result=denom/numerator;
 }
 *out=result;
 return SUCCESS;
}

Infoleaks

typedef struct resultStruct{
 uint8_t success;
 int result;
} resultStruct;
int divide_numbers(int denom, int numerator, resultStruct * out){
 if(!isSafePointer(out)){
 return INVALID_PTR;
 }
 resultStruct outStruct;
 outStruct.result=0; // No uninitialized memory!
 outStruct.success=0;
 if(denom != 0){
 outStruct.result=denom/numerator;
 outStruct.success=1;
 }
 memcpy(out,outStruct,sizeof(resultStruct));
 return SUCCESS;
}

Infoleaks

Takeaways
● Unvalidated Pointers

○ Difficulty to spot: Easy
○ Difficulty to fix: Easy
○ Risk: Critical

● Race Conditions
○ Difficulty to spot: Medium
○ Difficulty to fix: Depends/Medium
○ Risk: High

● Infoleaks
○ Difficulty to spot: Hard
○ Difficulty to fix: Easy
○ Risk: Low (still an issue though)

Takeaways
● Kernel security is really hard.
● Linux example

○ Linux had a “put_user” function that copied data to userspace.
■ Same as isValidPointer in my code.

○ They also had “unsafe_put_user” which was a faster version.
○ In one of the syscalls (waitid), a developer accidentally just used “unsafe_put_user”.

■ Pretty easy to exploit vulnerability that was incredibly easy to access

● Windows example
○ One project (bochspwn reloaded) attempted to automate finding infoleak bugs
○ The project was able to find 29 separate infoleaks.

■ One of vulnerable functions leaked up to 6672 bytes

Takeaways
● Kernel security is really hard.
● Linux example

○ Linux had a “put_user” function that copied data to userspace.
■ Same as isValidPointer in my code.

○ They also had “unsafe_put_user” which was a faster version.
○ In one of the syscalls (waitid), a developer accidentally just used “unsafe_put_user”.

■ Pretty easy to exploit vulnerability that was incredibly easy to access

● Windows example
○ One project (bochspwn reloaded) attempted to automate finding infoleak bugs
○ The project was able to find 29 separate infoleaks.

■ One of vulnerable functions leaked up to 6672 bytes

Questions?
● Looking for input on what to cover in the future

○ Binary Exploitation (Heap)
○ Low Level Stuff (Like this!.) (Maybe talk about pipelining and CPUs.)
○ Reverse Engineering (Hard to create a lot of content for.)

