
Chrome
Stuart Nevans Locke

Question to the audience:
What do you know about browsers and browser exploitation?

Disclaimer
● I am very far from an expert in this area

○ I probably will not know the answer to at least some questions

Overview
● Browser Security

○ An overview
■ Sandboxing

○ Javascript Engines

● V8
○ Dynamic Typing
○ Type Speculation
○ More type stuff!
○ TurboFan’s Sea of Nodes
○ Optimization Phases
○ Ranges

● Browsers are huge pieces of software
○ Chrome is made up of ~24 million LOC

● Pretty much all input they take is untrusted
○ Browsers basically spend all their time processing potentially malicious data

■ And users want them to be really fast

● We’re not going to be talking about XSS, but actually pwning the browser.
○ With a browser exploit, imagine how the impact of xss goes up.

Browser Security

Sandboxing
● Exploits just kept coming out unrelentlessly

○ Browser developers realized that they needed a way to reduce the number of important
exploits

● Enter: Sandboxing
○ Browsers have a bunch of subprocesses

■ Often 1 per tab
○ These are things like the HTML renderer and

the javascript engine.

● The HTML renderer and javascript engine
are sandboxed

○ Often grouped into “renderers”

Sandboxed Processes
● What exactly can these sandboxed processes do?

○ Pretty much nothing
■ No file access
■ No display access
■ No keyboard access

● What can they do?
○ Make (some) syscalls

■ If you have a kernel exploit, you can chain it
with a browser exploit

● How do they communicate with the rest of
the browser?

○ IPC
■ Also a good place to find vulns

Javascript Engines
● A Javascript Engine is what executes javascript
● These things are also incredibly complex

○ Chrome’s engine is v8
○ V8 is ~1.6 million LOC

● Because people are now writing web apps, javascript needs to run very fast
○ That means these engines need to be really optimized

● Often contain interpreters and JITs
○ Interpreter - A program that directly executes javascript code
○ JIT - just in time compiler

■ Compiles javascript to machine code, runs that

● Some engines actually have more than one JIT
○ Differing amounts of time spent optimizing based on how many times code is run

v8
● Because I know pretty much nothing about any engines other than v8, we’ll

be talking about v8 specifically
● Much of this stuff (should) apply to other engines

v8
● V8 has an interpreter and a JIT

○ Interpreter runs first
○ If code is “hot”, the JIT runs

■ V8’s JIT is TurboFan

Dynamic Typing Issues
● Javascript is a dynamically typed language
● This means we don’t have type information at compile time

○ Type information is incredibly important to optimization

● Take the function that is def add(a,b){return a+b;}
○ In javascript, we could pass any objects to this function

Add function
● If we knew that add was only passed integers, we could optimize it to ~1

assembly instruction
○ add reg1, reg2

● If any objects could be passed, it will probably be 100s of instructions if not
more.

○ Slower to run
○ Uses more memory

Type speculation
● The solution to this is to guess (speculate) on the types of the objects passed
● V8 just guesses that integers would be passed to the function
● The way this speculation is done is by looking at historical data

○ When a function is interpreted, type information is collected
○ If add was called only with integers while being

interpreted, TurboFan would compile it to expect integers

● This can vastly speed up code

Deoptimization
● Sometimes we speculate wrong

○ Maybe a function is just usually called with integers
○ If v8 guesses wrong it “deoptimizes”

● Deoptimization means it basically throws away it’s speculated type
information and just makes a generic function

Demo time

Type Information
● I don’t know the official name of this, so I might refer to it as a “shape”
● In javascript, objects have some type

○ The type contains information such as where to find property names
○ For example, if some object “obj” has a field named “x”, it would have an entry in the shape

saying where to find obj.x

● Typically these shapes are immutable and global
○ New ones are made if an object is given new properties or old properties are removed
○ Often shapes are shared by many objects

Pointer Tagging
● Note: V8 specific
● In v8, there are Small Integers (SMI) and Objects
● Smi’s are <32 bit integers

○ Weirdly, the value is stored in the upper 32 bits of a 64 bit value.
○ Meaning 0x123400000000 has a value of 0x1234

● Everything else is an object, meaning it is accessed via a pointer
○ All pointers end in 1.
○ The value 0xff00018001 would be a pointer to 0xff00018001

https://ponyfoo.com/articles/an-introduction-to-speculative-optimization-in-v8

Back to the add function
Check x is a small integer
movq rax, x
test al,0x1
jnz Deoptimize
Check y is a small integer
movq rbx, y
testb rbx,0x1
jnz Deoptimize

Convert y from Smi to Word32
movq rdx,rbx
shrq rdx, 32
Convert x from Smi to Word32
movq rcx,rax
shrq rcx, 32

add rdx, rcx
shl rcx, 32

Check integers

Get values of parameters

Actually add and save
value

● When doing compilation, TurboFan breaks the code up into a “sea of nodes”
● Basically combined CFG and DFG

○ Control Flow Graph
○ Data Flow Graph

● It’s pretty much just a graph
○ There are a bunch of lines, generally you can just look at it to figure out what’s going on

● Turbolizer
○ Visualizes the above
○ Incredibly useful

TurboFan’s Sea of Nodes

Demo Time

Optimization Phases
● There are a ton of these

○ The vulnerability I want to exploit is in the Typer
○ Within the last month, chrome actually put out a commit meant to reduce vulnerabilities in the

typer

● Typer
○ Associate types with a node
○ For example, PlainNumber is a type

● I’ll probably talk more about these later (not today)

Ranges
● We still need to optimize more!
● Just knowing the type of number (e.g. float vs int) isn’t enough to do all the

optimizations we want
● If we know the Range of a number, we can do even more.
● So TurboFan has a Range type that determines the possible range a number

can be within.
● Typically if you can generate an incorrect Range you have a vulnerability

Questions?

