
Reversing - Stack 
and Functions

Stuart Nevans Locke



Overview

● Review
● Intro to the Stack
● Some Instructions
● Functions
● More instructions



Review - Registers

Registers:
GPRs

Instruction Pointer



Review - Instructions

mov rax, 0

add rax, 5

mul 10

mov [rbx], rax



Review - Variables

How are variables stored at a low level?



Introduction to the Stack 

● Imagine a stack of books
○ LIFO (Last in - first out)

● Adding to the stack
○ pushing

● Removing from the stack
○ popping



X86 Stack Grows Down
ESP/RSP Keeps track of “top of the stack” -- even though it grows down



Stack Instructions

push SRC

Pushes an argument to the top of the stack

pop DST

Pops from the top of the stack and stores the result in DST



Stack Instructions - Examples

push 1

sub rsp, 8

mov [rsp], 16

pop rax

pop rbx

mov rax, 8

push rax

push 1

pop rax

pop rbx



JMP Instruction

Jmp DST

Jump to a given address.

Examples:
jmp rax

jmp 0x100

jmp [rax+4]



Functions

● There’s nothing technically required to have a function in 
assembly - just instructions at an address

● Still, we have some convention for them

main:

call label

label:

mov rax, 1

ret



Function Instructions

call address

Calls a function at a given address. It does this by pushing 
rip/eip/pc to the stack and setting rip equal to the address.

Examples:
call rax

call 0x5151



Function Instructions

ret

Returns from a function. It does this by popping the top item 
from the stack and setting rip equal to it.

Conceptually the same as “pop rip”

Examples:

ret



Function - Calling Convention

● Differs based on architecture
● On 32 bit x86, you push the arguments to the stack 

before calling
● On x86-64, you set some registers and they are assumed 

to have the arguments
● Return value is stored in eax/rax



Function Examples - C Code

int main(){

int result = add(1, 2);

}

int add(int arg1, int arg2){

return arg1 + arg2;

}



Function Examples

x86:

push 1

push 2

call add

add:

mov rax, [rsp-4] 

mov rbx, [rsp-8]

add rax, rbx

ret



X86-64:

mov rdi, 1

mov rsi, 2

call add

Function Examples

add:

add rdi, rsi

mov rax, rdi

ret



Stack Frames

Some functions have local 
variables, which are stored on the 
stack

They use the “base pointer to help 
with this”

Every function saves the calling 
function’s base pointer, and uses 
the base pointer to access local 
variables

Previous Stack Frame

Return Address

Previous Base Pointer

Local Variables

Base 
Pointer

Stack 
Pointer



Example: C code

int main(){

int result = add(1,2,3); 

}

int add(int a, int b, int c){

int x = a + b;

return x + c;
}



add:

push rbp

mov rbp, rsp

sub rsp, 0x8

add rdi, rsi

mov [rbp - 0x8], rdi

main:

mov rdi, 1

mov rsi, 2

mov rdx, 3

call add

Example x86-64

mov rax, [rbp-0x8]

add rax, rdx

leave

ret



Leave

leave

Cleans up a stack frame.

Leave is the same as:

mov rsp, rbp

pop rbp



push rbp

mov rbp, rsp

sub rsp, SIZE

Prologue and Leave 

Leave:
mov rsp, rbp
pop rbp

Previous Stack Frame

Return Address

Previous Base Pointer

Local Variables

Base 
Pointer

Stack 
Pointer



Instructions - CMP

Cmp arg1, arg2

Compare arg1 and arg2. It essentially does this via 
subtraction. The result of the comparison is saved in EFLAGS. 
(Zero flag, Sign flag, Overflow Flag, Carry Flag)

Examples:

cmp rax, 5

cmp rax, rbx



Instructions - Conditional Jumps

jz/je address-- Jump if Zero. Checks the zero flag. If set, jump to address. 
Otherwise, just continue executing. (jump zero, jump equal)

jnz/jne address -- Jumps if zero flag is NOT set.

jg - Jump if greater than. (Actual flags are more complicated).

jge - Jump if greater than or equal to.



Examples:

mov rax, 8

cmp rax, 7

je location1

jg location2



Some actual reversing

Download cutter

https://cutter.re/

Open a linux VM or WSL (Windows Subsystem for Linux)

https://cutter.re/

